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ABSTRACT

In recent years, a number of solution generatirghitggques for spherically symmetric perfect fluidu§ons of Einstein’s
equations have been invented. Besides, solutiotls aylinderical symmetry are much less studied bseaof the
complexity of calculations involving the equatidos cylinderically spacetime. For our kith intereist the cylindrically
symmetric static perfect fluid solutions of Einsteiequations, we have provided an algorithm amd f new realistic

solution.
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1. INTRODUCTION

Spherically symmetric solutions of Einstein’s equas have attracted the interests of researcherkimgpin this field.
This is because phenomena such as black-holegponestars etc. have been found in the class otftieoki[1-8] with
spherical symmetry. As a result many such solutibese been discovered. In contrast, solutions withindrical
symmetry are much less studied. Whereas in the afispherical symmetry, one is to solve for two mmkn metric
functions in the case of cylindrical symmetry, athe to solve for three unknown metric functionsccarding to
Birkhoff's theorem, exterior solution of any spleaily symmetric source is uniquely determined by Bchwarzschild
solution. On the other hand, there is no Birkoffisorem for space-times with cylindrical symmefriaere exist infinitely
many exterior solutions for space-times with cytindl symmetry. Any cylindrically symmetric interi@olution must be
joined with any one of those exterior solutionshet boundary of the cylindrically symmetric souréée general form of
the spherically symmetric space-time metric in sjglaé coordinates is unique. In contrast, genexmf of the
cylindrically symmetric space-time metric is notigue so that the same solution may look differemt different

definitions of the radial coordinate in a cylindrdicoordinate system.

The rest of this paper is organized in the follogwmay. In Section-2, we write down the general farfithe static
cylindrically symmetric space-time metric in thegantial gauge and derive all vacuum solutionsSeéntion-3, we write
down the form of the metric in the arc-length gaage derive some perfect fluid solutions for sgeahoices of one of

the three metric functions. This is mainly a revidw Section-4, we have derived the field equationshe tangential
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2 M. A. Kauser & Q. Islam

gauge Main result of this chapter is provided in SectlmriHere, we have shown that the field equationsbeareduced to
a pair of simultaneous Riccati type differentialuations whose general solution depends on the fgimn of a

particular solution f(r). It is also shown thatclass of physically acceptable solutions can besggead if f(r) satisfies the
condition f (0) = 0. An algorithm is provided foegerating all such solutions. In Section-6, theatgm is illustrated by

generating a new realistic solution. Finally in &t7, some concluding remarks are given.
2. STATIC CYLINDRICALLY SYMMETRIC VACUUM SOLUTIONS

The general static cylindrically symmetric spacadimetric can be written as
d? = —e?Odt? + e O dr? + 2N gg? + ¥ g2 )

Here z denotes the coordinate along the central@$ymmetry, r denotes the radial coordinate whias value

zero on the axis of symmetry and which increase®res moves away from the axis of symmet@, denotes the

coordinate which measures an angle around theodsigmmetry.

, N2 — A20(r)
Let us choose the gauge by defining the new ramiatdinate! such tha(r )" = . Then the metric (1)
reduces to
ds® = —-e?dt? +e?"dr? +r?dg* +e*"dz @)

Where the prime on r has been omitted. The formvhith metric (2) is written is called tangentialuge. There
are many different conventions for defining theiahdoordinate. For example, the radial coordirtate be defined in such

a way that metric (1) takes the form
ds® = -e?dt® + dr? +e*d& +e¥d7Z 3)

The form in which metric (3) is written is callettdength gauge.

: : : . . . =0 o
We are interested to find vacuum solutions. In ttase, Einstein’s equations reduceF'SG” . We find it

convenient to work in the tangential gauge in whish metric has the form (2). Nonzero componehtsR?)B for the

metric (2) are given by [9],

Rio= 2<¢‘“>{¢" @y -gn+ L w'¢'}

r

(4)

" "2 AT /\' " n2 ] ]

R, ==¢" () + PN + - W' = (W) + AW
(5)

— 2N\ AW

Ry =€2r(N'-¢'-w) )

R,= —ez“"“{lw +(W) -WA + W'y +%}
(7)
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. . - . - , : =0 .
Where primes denote differentiations with respeat tEinstein’s vacuum field equatmn%’ﬂ then provide
the following system of equations,

N=g+w ®)
¢II + ﬂ — O
r €)
n LIJ'
W'+ =0
r oj1
, , I kP’
¢'w 2. Y
r r (12)
Thus we have four equations for three unknown fonst The system of equations (8) - (10) has thatiso
- b
¢ =logc,r®) W =log(c,r’) A =log(c,r™”) (12a, b, ¢)
Inserting (12a, b, c¢) into (11) we obtain the comst
ab+a+b=0 (23)
Therefore all vacuum static cylindrically symmetmutions of Einstein’s equations are given by
ds’ = —¢’r®dt® + ¢,’r**?dr? + r’d&” +¢,’rdZ a4

2 2 2
Subject to the constraint (13). The constafits and ©2 can be absorbed by rescaling t and z. The cong?ant

2 2
can be absorbed by rescaling r, which affectsqu% term by bringing out another consta‘ﬁt in its coefficient. The

2 0
constantk can be absorbed by rescaliﬁgwhich redefines its range from 0 to some arfdle Therefore, all vacuum
static cylindrically symmetric solutions of Einst& equations in the tangential gauge are given by

ds’ = —r#dt® +r2*dr? + r’d6” +r*°d7Z (15)

0 o
Where a and b are restricted by the constraint Q]Jﬂ)wherQs O<a , where @ may or may not be equal

2N jfa=b= 0, constraint (13) is satisfied. TH&B) reduces to

ds® = —dt® +dr® + r’d&” +dZ (16)

0
Metric (16) represents the ordinary Minkowski spédé happens tha® =271 Otherwise it represents a cone
solution.

Any interior cylindrically symmetric solution mubg joined smoothly with any one of the 1-paramétenily of
solutions (15) at the boundary of the cylindricaiynmetric source.
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3. STATIC CYLINDRICALLY PERFECT FLUID SOLUTIONS

Previously, perfect fluid solutions with cylindriceymmetry have been discussed, among others, ag BW], Bronnikov
[11] and Sharif [12]. Evan and Bronnikov used vasieequations of state which can be writter¥as V' P for specific

values of /' as well as energy conservation equation. Sharifidosome solutions by specifying one of the threrim

functions. They used the form of the metric in #re-length gauge. In Section-4.4, we will show theing the form of
the metric in the tangential gauge, it is posstbldéind all static cylindrically symmetric perfefitiid solutions in closed
form. Before that, let us see how solutions arévddrin [12] using the form of the metric in thecdength gauge, which

we rewrite for convenience in the following way,
ds’ =—"dt* +dr® + €' g’ + e d7 (17)

If the matter content is perfect, fluid Einsteigguations provide the system of equations [11],

Al A ey "
SHPZ—GZ(GZJ —ez[ezj —AT'U

(18)
_H( K _rir
8mp=e Z[ezj +e Z[eZJ +—'L/4V
19)
(v A4 A
8mp=e Z(ezj +e Z(eZJ +—4V
(20)
— 1 ] ]
8mp==(Nu +uy + 1Y)
4 (21)
To solve the above system of equations the cas)eg(_ﬂo, (B) A =0 ang (C)/J =0 are considered.
Case A:ln this case equations (19) — (21) can be expressed
y_Z2y_z zZ._y
Y Z Y Zgg¢Z Y (22a, b, c)
H A
—_ 2 _ )
WhereY ~ € 2= e’ and primes denote derivatives with respect toant{22b) and (22¢) we get
y=kz Z=ky (23a, b)
Equations (23a) and (23b) imply
y" _ Z" _
T T k1k2
y ¢ (24)
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Which imposes a constraint. Using (23b) in (23aget
y' = (kk;)y=0 (25)

Equation (25) can be solved for y. Knowing y(r)y) ztan be found from (23b). Four cases arise,l'({bz< 0, (ii)
kKo 5 o, iy K1 #0 K =0 4ng 1k =0 K %0,

(i) In this case we get the solution

eg =k, cos/—kk, r +k,)
eg— / sm(,/ kk, r+k,)

(ii) In this case we obtain

“
e? =k, coshg/kk, r)

A

e2 =k \/Esmh(\/kl_kr+k5)

H
2 —
iy € =G +¢c
A
e? =¢,
“
e =
) &~
A
e? =cr+c,

For each of these solutions we get

3 _1
P= 8kk P= k p+3p0

We see that solution Witlll(lkz < 0 has a positive energy density while wlfth > 0 has a negative energy

density. If k1k2 = 0, the solution is trivial.

www.iaset.us edi@iaset.us



6 M. A. Kauser & Q. Islam

Case B:In this case equations (19) — (21) reduce to

(26)

“ (v
27)

(28)

In this case” and P are given by
1 _
p=g Kke"=p

We find that both® and P depend ony(r).

Case C:Case C is trivial and can be solved by replao!‘rﬁm Case B by] . This yields the Evan'’s solution [10].
4. FIELD EQUATIONS IN THE TANGENTIAL GAUGE

We are interested in finding static cylindricallynsmetric internal solutions when the matter conisrgerfect fluid. For

this, we are to solve the equation

1
RW _E 9. R= 87TTW

(29)
We find it convenient to use the form of the meini¢he tangential gauge which we rewrite for carieace,
ds’ = -0 dt? +e*"Vdr? +r2dg? +e*VdZ @
1
) ) G,uv = R,uv _E g,uvR ) )
Nonzero components of the Einstein’s tensor for the metric (2) are given by [9]
G, = 2N " —y'? +YN +A _i
r r
, , I LIJ'
Grr =¥ ¢ +£ +—
r r

Ggg - r.Ze—Z/\ (¢"+¢12 —¢'/\'+LIJ"+quz _qu/\r+qu¢r)
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B /\! I
GZZ = eZ(‘-P N) ¢"+¢12 _¢I/\I__+£
r r
Since the matter content is perfect fluid

T, =(@+puy, —pg,

T
Nonzero components of#Y are found to be
— An2f — 2/ — 2 _ 2y
Tﬁ_m ,Trr = p€ ,T¢¢_pr ,Tzz_pe
Using these in equation (29) we obtain the equation

8]Tp:e—2/\(_ LIJ"_LIJIZ_I_wr/\r_*_A_ij

r r (30)
8mp= e‘z"(LIJ'qﬁ’ +£+£j
ror 31)
87Tp - e—2/\ (¢" +¢12 _¢I/\I + LIJ" + LPIZ _ LlJI/\I + LIJ1¢:) (32)
ror 33

We have only four equations (30) - (33) for theefismknown functiong(r) , p(l’), ¢(r) , A(r) and w(r) .

In the following, we provide a formalism for obtaig all static cylindrically symmetric perfect stitns which
depends on the specification of a single solutienegating function. However, not all specificatiasfsthe generating
function can generate physically acceptable saluft@r obtaining physically acceptable solutiohs, generating function
is required satisfy some conditions.

5. GENERATION OF ALL STATIC CYLINDRICALLY SYMMETRIC
PERFECT FLUID SOLUTIONS

From equations (31) — (33) we obtain

LIJH+LIJ12+LIJI¢I_£_LIJIAI+A:O
r r

¢n+¢12_w1¢1_‘/j7_¢r/\1_/\7=0

These can be rearranged as

l'IJ" - M _ (¢I _/\I)LIJI _ LIJIZ
r (34)
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— l'I'J"f‘/\’ +(q),+/\:)¢:_¢12
r (35)

4"

Equations (34) and (35) are Riccati type differ@ntiquations. Also I' is a particular solution of (34) for

any choice of¢ -A . The general solution of a Riccati type differahtequation can be obtained if one particular

solution is known. Hence the general solution d@f) (@an be found. Equation (35) has no such paaticolution.

From equations (34) and (35) we obtain

" 12
A,:¢,_rLIJ +rkI'J
1-r¥y (36)
/\l: r¢"+r¢i’2 _q}l
1+r¢ 37)

From equations (36) and (37) we obtain

¢ 1P _ry -y oy

1+r¢' 1_rLIJ' = f(r),say (38)

From (38) we obtain the pair of equations

, =1, f
P =
r r (39)
LIJ"+ rf _1LPI=1_2LIJ12
r r (40)

From (36), (37) and (38) it can be seen tatis given by

/\r:¢1_LPr_f(r) (41)

p=1

Given f(r), (39) can be solved f&j as it is linear in¢ . Since I' is a particular solution of the of the
Riccati type differential equation (40), it canalse solved. Knowinf , W' and f(n), N' is determined by (41)p(r)
is then obtained from (30) and p(r) is obtainedrfrany one of the equations (31) — (33). Thus, gqecisication of f(r)
generates a solution. Conversely for any solutiverd is an f(r). This provides formalism for genieig all static
cylindrically symmetric perfect fluid solutions @instein’'s equations. Although any specificationf@j generates a

solution, it is not guaranteed that the resultioiton is physically acceptable. For physical gtability, it is necessary

ihat O =¥(0)=A0) =0

Y'(0)=¢'(0)=0

so that the metric coefficients are equal to Inglthe axis r = 0. We also require

¥ (0)

to obtain smooth solutions along r = 0. From (%88 see that i1¢ © and are finite then
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Y0 =¢'0)=0 implies f(0) = 0. In that case (4.41) shows tt(ét(o) :0. Therefore a class of physically
acceptable solutions may be generated by chooginguch that f(0) = 0. Inspired by this, we nowevyide the following

algorithm for generating physically acceptable tsohs.

THE ALGORITHM

L)
PRRLT

Then f(0) = O iff 9'0 =0 and g(O)"t 0. Then the solutions of (39) and (40), can betamitn closed form as follows,

40 =L[c—j 91 dr}
g

r

(42)
2rzgj'$ +1
' r
2r'gf 5
r-g (43)
Using (42) and (43) in (41) we obtain
2r%g $+1
__'r9
/\'(r)=L{C—J-g(2r)dr} orsg I 9O
g r _ r-g a(r) (44)

Given g(r) such thag’(o) = O, 9(0)#0 the metric functiong(r) , w(r) and/\(r) are determined by (42),
(43) and (44) respectively. The energy denﬁ’tg) and pressure p(r) are then given by (30) and (31).

Using the algorithm outlined above, we have foumgta solution in Section-6.
6. NEW SOLUTION
Let us choose

g (r) = k = constant.

In this case we havd (r)= 0. Inserting these in (42), (43) and (44) we obtain

cr
cr’ -1

oy CI oy
pr)=ar W (r)_—CI‘Z—l, N(r)=ar-

¢(r):a—;+b1 w(r)=%log(1—cr2>+b2
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_1r o —er2 _
A(r) =3 ar®—log@l—-crv)|+b, —-b,

The conditions¢(0) =¥0)=A0)=0 are satisfied iibl = b2 = 0. Clearly qJ'(O) = ¢’(O) = 0. Hence,

the solution is regular on the axis of symmetryeigy p(r) and pressure p(r) are calculated as

3—-a
plr)=——
8rre
a-c-2acr?
p(r)==——"""—
8rre

Both p(r) and p(r) are decreasing functions of r.

3c-a _
n="_°< — a—C
PO == p(O) o

Clearly P0)>0,g PO) >0 c<a<3c etr=Rbethe point where p(r) = 0
—=a-c-2ac-2ack =0
This gives

R= a—c>0

2ac ifa>0,c>0anda>c,orif a<0, c<0amda

Therefore this gives a realistic solution.
7. CONCLUSIONS

Choice of gauge (coordinate system) plays an inaporole in cylindrically symmetric solutions ofristein’s equations.
We have found it convenient to use the tangentiigg. Using this gauge, we have found a new statindrically

symmetric perfect fluid solution. Generation altBwsolutions depends on the specific of a singbaitifunction f(r). A
"(r

class of realistic solutions is generated by chapsi g(r) where g(r) = constant.
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