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ABSTRACT 

In recent years, a number of solution generating techniques for spherically symmetric perfect fluid solutions of Einstein’s 

equations have been invented. Besides, solutions with cylinderical symmetry are much less studied because of the 

complexity of calculations involving the equations for cylinderically spacetime. For our kith interest in the cylindrically 

symmetric static perfect fluid solutions of Einstein’s equations, we have provided an algorithm and find a new realistic 

solution. 
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1. INTRODUCTION 

Spherically symmetric solutions of Einstein’s equations have attracted the interests of researchers working in this field. 

This is because phenomena such as black-holes, neutron stars etc. have been found in the class of solutions [1-8] with 

spherical symmetry. As a result many such solutions have been discovered. In contrast, solutions with cylindrical 

symmetry are much less studied. Whereas in the case of spherical symmetry, one is to solve for two unknown metric 

functions in the case of cylindrical symmetry, other is to solve for three unknown metric functions. According to 

Birkhoff’s theorem, exterior solution of any spherically symmetric source is uniquely determined by the Schwarzschild 

solution. On the other hand, there is no Birkoff’s theorem for space-times with cylindrical symmetry. There exist infinitely 

many exterior solutions for space-times with cylindrical symmetry. Any cylindrically symmetric interior solution must be 

joined with any one of those exterior solutions at the boundary of the cylindrically symmetric source. The general form of 

the spherically symmetric space-time metric in spherical coordinates is unique. In contrast, general form of the 

cylindrically symmetric space-time metric is not unique so that the same solution may look different for different 

definitions of the radial coordinate in a cylindrical coordinate system.  

The rest of this paper is organized in the following way. In Section-2, we write down the general form of the static 

cylindrically symmetric space-time metric in the tangential gauge and derive all vacuum solutions. In Section-3, we write 

down the form of the metric in the arc-length gauge and derive some perfect fluid solutions for specific choices of one of 

the three metric functions. This is mainly a review. In Section-4, we have derived the field equations in the tangential 
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gauge. Main result of this chapter is provided in Section-5. Here, we have shown that the field equations can be reduced to 

a pair of simultaneous Riccati type differential equations whose general solution depends on the specification of a 

particular solution f(r). It is also shown that, a class of physically acceptable solutions can be generated if f(r) satisfies the 

condition f (0) = 0. An algorithm is provided for generating all such solutions. In Section-6, the algorithm is illustrated by 

generating a new realistic solution. Finally in Section-7, some concluding remarks are given.  

2. STATIC CYLINDRICALLY SYMMETRIC VACUUM SOLUTIONS 

The general static cylindrically symmetric space-time metric can be written as  

2)(22)(22)(22)(22 dzededredteds rrrr ψϕ θ +++−= ΩΛ
                                                                                (1) 

Here z denotes the coordinate along the central axis of symmetry, r denotes the radial coordinate which has value 

zero on the axis of symmetry and which increases as one moves away from the axis of symmetry, θ  denotes the 

coordinate which measures an angle around the axis of symmetry.  

Let us choose the gauge by defining the new radial coordinate r ′  such that
)(22)( rer Ω=′
. Then the metric (1) 

reduces to 

2)(2222)(22)(22 dzedrdredteds rrr ψϕ θ +++−= Λ
                                                                                      (2) 

Where the prime on r has been omitted. The form in which metric (2) is written is called tangential gauge. There 

are many different conventions for defining the radial coordinate. For example, the radial coordinate can be defined in such 

a way that metric (1) takes the form  

2)(22)(222)(22 dzededrdteds rrr ψϕ θ +++−= Ω
                                                                                             (3) 

The form in which metric (3) is written is called arc-length gauge.  

We are interested to find vacuum solutions. In this case, Einstein’s equations reduce to 
0=αβR

. We find it 

convenient to work in the tangential gauge in which the metric has the form (2).  Nonzero components of αβR
 for the 

metric (2) are given by [9],  







 ′Ψ′+

′
+Λ′′−′+′′= Λ− ϕϕϕϕϕϕ

r
eR 2)(2

00 )(
                                                                                               (4) 

Ψ′Λ′+Ψ′−Ψ ′′−Λ′
+Λ′′+′−′′−= 22 )()(

r
Rrr ϕϕϕ

                                                                                    (5) 

( )Ψ′−′−Λ′= Λ− ϕθθ reR 2

                                                                                                                                (6) 







 Ψ′

+′Ψ′+Λ′Ψ′−Ψ′+Ψ ′′−= Λ−Ψ

r
eRzz ϕ2)(2 )(

                                                                                       (7) 
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Where primes denote differentiations with respect to r. Einstein’s vacuum field equations 
0=αβR

 then provide 

the following system of equations, 

Ψ′+′=Λ′ ϕ                                                                                                                                                          (8) 

0=
′

+′′
r

ϕϕ
                                                                                                                                                           (9) 

0=Ψ′
+Ψ ′′

r                                                                                                                                                        (10) 

0=Ψ′
+

′
+Ψ′′

rr

ϕϕ
                                                                                                                                         (11) 

Thus we have four equations for three unknown functions. The system of equations (8) - (10) has the solution 

)log( 1
arc=ϕ , )log( 2

brc=Ψ ,
)log( 3

barc +=Λ
                                                                                (12a, b, c) 

Inserting (12a, b, c) into (11) we obtain the constraint 

ab + a +b = 0                                                                                                                                                           (13) 

Therefore all vacuum static cylindrically symmetric solutions of Einstein’s equations are given by 

222
2

222)(22
3

222
1

2 dzrcdrdrrcdtrcds bbaa +++−= + θ
                                                                               (14) 

Subject to the constraint (13). The constants 
2

1c  and 
2

2c  can be absorbed by rescaling t and z. The constant 
2

3c
 

can be absorbed by rescaling r, which affects the 
2θd  term by bringing out another constant 

2k  in its coefficient. The 

constant 
2k  can be absorbed by rescaling θ  which redefines its range from 0 to some angle 

∗α . Therefore, all vacuum 

static cylindrically symmetric solutions of Einstein’s equations in the tangential gauge are given by  

22222)(2222 dzrdrdrrdtrds bbaa +++−= + θ                                                                                                (15) 

Where a and b are restricted by the constraint (13) and where
∗≤≤ αθ0 , where 

∗α  may or may not be equal 

π2 . If a = b = 0, constraint (13) is satisfied. Then (15) reduces to  

222222 dzdrdrdtds +++−= θ                                                                                                                      (16) 

Metric (16) represents the ordinary Minkowski space if it happens that 
∗α = π2 . Otherwise it represents a cone 

solution. 

Any interior cylindrically symmetric solution must be joined smoothly with any one of the 1-parameter family of 

solutions (15) at the boundary of the cylindrically symmetric source. 
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3. STATIC CYLINDRICALLY PERFECT FLUID SOLUTIONS 

Previously, perfect fluid solutions with cylindrical symmetry have been discussed, among others, by Evan [10], Bronnikov 

[11] and Sharif [12]. Evan and Bronnikov used various equations of state which can be written as pγρ =  for specific 

values of γ  as well as energy conservation equation. Sharif found some solutions by specifying one of the three metric 

functions. They used the form of the metric in the arc-length gauge. In Section-4.4, we will show that, using the form of 

the metric in the tangential gauge, it is possible to find all static cylindrically symmetric perfect fluid solutions in closed 

form. Before that, let us see how solutions are derived in [12] using the form of the metric in the arc-length gauge, which 

we rewrite for convenience in the following way, 

2)(2)(22)(2 dzededrdteds rrr µλγ θ +++−=                                                                                                  (17) 

If the matter content is perfect, fluid Einstein’s equations provide the system of equations [11],  

4
8 2222 µλρπ

µµλλ ′′
−

″











−

″











−=

−−
eeee

                                                                                                       (18) 

4
8 2222 γµπ

γγµµ ′′
+

″











+

″











=

−−
eeeep

                                                                                                           (19) 

4
8 2222 γλπ

λλγγ ′′
+

″











+

″











=

−−
eeeep

                                                                                                           (20) 

( )γλγµµλπ ′′+′′+′′=
4
1

8 p
                                                                                                                          (21) 

To solve the above system of equations the cases (A) 0=γ , (B) 0=λ  and (C) 0=µ  are considered.  

Case A: In this case equations (19) – (21) can be expressed as  

z

z

y

y ′′
=

′′

, z

z

y

y ′
=

′
′′

 and y

y

z

z ′
=

′
′′

                                                                                                             (22a, b, c) 

Where
2

µ

ey = , 
2

λ

ez = and primes denote derivatives with respect to r. From (22b) and (22c) we get  

zky 1=′
, ykz 2=′

                                                                                                                                        (23a, b) 

Equations (23a) and (23b) imply  

21kk
z

z

y

y =
′′

=
′′

                                                                                                                                                    (24) 
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Which imposes a constraint. Using (23b) in (23a) we get   

0)( 21 =−′′ ykky                                                                                                                                                  (25) 

Equation (25) can be solved for y. Knowing y(r), z(r) can be found from (23b). Four cases arise, (i) 21kk < 0, (ii) 

21kk > 0, (iii) 01 ≠k , 02 =k  and (iv) 01 =k , 02 ≠k .  

(i) In this case we get the solution  

)cos( 4213
2 krkkke +−=
µ

 

)sin( 421
1

2
3

2 krkk
k

k
ke +−−=

λ

 

(ii) In this case we obtain  

)cosh( 214
2 rkkke =
µ

  

)sinh( 521
1

2
4

2 krkk
k

k
ke +=

λ

 

(iii) 21
2 crce +=
µ

 

3
2 ce =
λ

 

(iv) 3
2 ce =
µ

 

21
2 crce +=
λ

 

For each of these solutions we get 

21kk
8
3
π

ρ −=
, 

21kk
8
1
π

=p
, 03 =+ pρ   

We see that solution with 21kk  < 0 has a positive energy density while with 21kk  > 0 has a negative energy 

density. If 21kk  = 0, the solution is trivial.  
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Case B: In this case equations (19) – (21) reduce to 

022 =

′















 ′










 µγ

ee

                                                                                                                                                 (26) 

02222 =
″











+

″










 −− γγµµ

eeee

                                                                                                                              (27) 

022 =

′















 ′










− γµ

ee

                                                                                                                                                (28) 

In this case ρ  and p  are given by  

pe == −γ

π
ρ 21kk

8
1

 

We find that both ρ  and p  depend on )(rγ .  

Case C: Case C is trivial and can be solved by replacing µ in Case B byλ . This yields the Evan’s solution [10]. 

4. FIELD EQUATIONS IN THE TANGENTIAL GAUGE 

We are interested in finding static cylindrically symmetric internal solutions when the matter content is perfect fluid. For 

this, we are to solve the equation  

µνµνµν π TRgR 8
2

1 =−
                                                                                                                                    (29) 

We find it convenient to use the form of the metric in the tangential gauge which we rewrite for convenience, 

2)(2222)(22)(22 dzedrdredteds rrr ψϕ θ +++−= Λ
                                                                                      (2) 

Nonzero components of the Einstein’s tensor 
RgRG µνµνµν 2

1−=
 for the metric (2) are given by [9]  








 Ψ′
−Λ′

+Λ′′+Ψ′−Ψ ′′−= Λ−

rr
eGtt ψϕ 2)(2

                                              

rr
Grr

Ψ′
+

′
+′Ψ′= ϕϕ

                                      

( )ϕϕϕϕθθ ′Ψ′+Λ′Ψ′−Ψ′+Ψ ′′+Λ′′−′+′′= Λ− 2222erG
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






 ′
+Λ′

−Λ′′−′+′′= Λ−Ψ

rr
eGzz

ϕϕϕϕ 2)(2

   

Since the matter content is perfect fluid 

µννµµν ρ pguupT −+= )(
 

Nonzero components of µνT
 are found to be   

ϕρ 2eTtt =
, 

Λ= 2peTrr , 
2prT =ϕϕ , 

Ψ= 2peTzz   

Using these in equation (29) we obtain the equations  








 Ψ′
−Λ′

+Λ′′+Ψ′−Ψ ′′−= Λ−

rr
e ψρπ 228

                                                                                               (30) 








 Ψ′
+

′
+′Ψ′= Λ−

rr
ep

ϕϕπ 28
                                                                                                                      (31) 

( )ϕϕϕϕπ ′Ψ′+Λ′Ψ′−Ψ′+Ψ ′′+Λ′′−′+′′= Λ− 2228 ep                                                                      (32) 








 ′
+Λ′

−Λ′′−′+′′= Λ−

rr
ep

ϕϕϕϕπ 228
                                                                                                   (33) 

We have only four equations (30) - (33) for the five unknown functions )(rρ , )(rp , )(rϕ , )(rΛ  and )(rΨ .  

In the following, we provide a formalism for obtaining all static cylindrically symmetric perfect solutions which 

depends on the specification of a single solution generating function. However, not all specifications of the generating 

function can generate physically acceptable solution. For obtaining physically acceptable solutions, the generating function 

is required satisfy some conditions.  

5. GENERATION OF ALL STATIC CYLINDRICALLY SYMMETRIC  

PERFECT FLUID SOLUTIONS 

From equations (31) – (33) we obtain  

02 =Λ′
+Λ′Ψ′−

′
−′Ψ′+Ψ′+Ψ ′′

rr

ϕϕ
  

02 =Λ′
−Λ′′−

′
−′Ψ′−′+′′

rr
ϕψϕϕϕ

 

These can be rearranged as  

( ) 2Ψ′−Ψ′Λ′−′−Λ′−′
=Ψ ′′ ϕϕ

r                                                                                                                 (34) 
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( ) 2ϕϕϕ ′−′Λ′+Ψ′+Λ′+Ψ′
=′′

r                                                                                                                  (35) 

Equations (34) and (35) are Riccati type differential equations. Also r

1=Ψ′
 is a particular solution of (34) for 

any choice of Λ′−′ϕ . The general solution of a Riccati type differential equation can be obtained if one particular 

solution is known. Hence the general solution of (34) can be found.  Equation (35) has no such particular solution.   

From equations (34) and (35) we obtain  

Ψ′−
Ψ′+Ψ ′′

−′=Λ′
r

rr

1

2

ϕ
                                                                                                                                       (36) 

Ψ′−
′+
′+′′

=Λ′
ϕ
ϕϕ

r

rr

1

2

                                                                                                                                      (37) 

From equations (36) and (37) we obtain  

=
′+
′′−′

ϕ
ϕϕ

r

r

1  Ψ′−
Ψ′+Ψ′−Ψ ′′

r

r

1

2 2

 )(rf= , say                                                                                                 (38) 

From (38) we obtain the pair of equations  

r

f

r

rf −=′−+′′ ϕϕ 1

                                                                                                                                     (39) 

22
1 Ψ′−=Ψ′−+Ψ ′′

r

f

r

rf

                                                                                                                            (40) 

From (36), (37) and (38) it can be seen that Λ′  is given by  

)(rf−Ψ′−′=Λ′ ϕ                                                                                                                                           (41) 

Given f(r), (39) can be solved for ϕ ′
 as it is linear in ϕ ′

. Since r

1=Ψ′
 is a particular solution of the of the 

Riccati type differential equation (40), it can also be solved. Knowing ϕ ′
, Ψ′  and f(r), Λ′  is determined by (41). )(rρ  

is then obtained from (30) and p(r) is obtained from any one of the equations (31) – (33). Thus, any specification of f(r) 

generates a solution. Conversely for any solution there is an f(r). This provides formalism for generating all static 

cylindrically symmetric perfect fluid solutions of Einstein’s equations. Although any specification of f(r) generates a 

solution, it is not guaranteed that the resulting solution is physically acceptable. For physical acceptability, it is necessary 

that 0)0()0()0( =Λ=Ψ=ϕ  so that the metric coefficients are equal to 1 along the axis r = 0. We also require 

0)0()0( =′=Ψ′ ϕ  to obtain smooth solutions along r = 0. From (4.38) we see that if )0(ϕ ′′
 and )0(Ψ ′′

 are finite then 
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0)0()0( =′=Ψ′ ϕ  implies f(0) = 0. In that case (4.41) shows that 0)0( =Λ′
. Therefore a class of physically 

acceptable solutions may be generated by choosing f(r) such that f(0) = 0. Inspired by this, we now provide the following 

algorithm for generating physically acceptable solutions.  

THE ALGORITHM 

Let )(

)(
)(

rg

rg
rf

′
=

 

Then f(0) = 0 iff 0)0( =′g  and g(0)≠ 0. Then the solutions of (39) and (40), can be written in closed form as follows,  






 ′
−=′ ∫ dr

r

rg
c

g

r
r

2

)(
)(ϕ

                                                                                                                              (42) 

∫

∫ +
=Ψ′

gr

dr
gr

gr

dr
gr

r

3
3

3
2

2

12

)(

                                                                                                                                   (43) 

Using (42) and (43) in (41) we obtain  






 ′
−=Λ′ ∫ dr

r

rg
c

g

r
r

2

)(
)(

 -
∫

∫ +

gr

dr
gr

gr

dr
gr

3
3

3
2

2

12

)(

)(

rg

rg′
−

                                                                               (44) 

Given g(r) such that 0)0( =′g , 0)0( ≠g  the metric functions )(rϕ , )(rΨ  and )(rΛ  are determined by (42), 

(43) and (44) respectively. The energy density )(rρ  and pressure p(r) are then given by (30) and (31).  

Using the algorithm outlined above, we have found a new solution in Section-6.  

6. NEW SOLUTION 

Let us choose 

g (r) = k = constant. 

In this case we have 0)( =′ rg . Inserting these in (42), (43) and (44) we obtain  

arr =′ )(ϕ , 1
)(

2 −
=Ψ′

cr

cr
r

, 1
)(

2 −
−=Λ′

cr

cr
arr

 

1

2

2
)( b

ar
r +=ϕ

, 
2

2 )1log(
2

1
)( bcrr +−=Ψ

,  
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[ ] 21
22 )1log(

2

1
)( bbcrarr −+−−=Λ

  

The conditions 0)0()0()0( =Λ=Ψ=ϕ  are satisfied if 021 == bb . Clearly 0)0()0( =′=Ψ′ ϕ . Hence, 

the solution is regular on the axis of symmetry. Energy )(rρ  and pressure p(r) are calculated as   

2

8

3
)(

are

ac
r

π
ρ −=

  

2

8

2
)(

2

are

acrca
rp

π
−−=

  

Both )(rρ  and p(r) are decreasing functions of r.  

π
ρ

8

3
)0(

ac −=
, π8

)0(
ca

p
−=

  

Clearly 0)0( >ρ and 0)0( >p  if cac 3<< . Let r = R be the point where p(r) = 0  

022 2 =−−−⇒ acRacca .  

This gives  

0
2

>−=
ac

ca
R

 if a > 0, c > 0 and a > c, or if  a <0, c <0 and a > c.  

Therefore this gives a realistic solution.  

7. CONCLUSIONS 

Choice of gauge (coordinate system) plays an important role in cylindrically symmetric solutions of Einstein’s equations. 

We have found it convenient to use the tangential gauge. Using this gauge, we have found a new static cylindrically 

symmetric perfect fluid solution. Generation all such solutions depends on the specific of a single input function f(r). A 

class of realistic solutions is generated by choosing )(

)(
)(

rg

rg
rf

′
=

 where g(r) = constant. 
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